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Abstract: The inventory and assessment of a geosite in a territory provides a sound basis for the
protection and use of its geological heritage. This article aims to evaluate the most relevant geosites
in the province of Chimborazo (Ecuador), applying the Spanish Inventory of Sites of Geological
Interest (IELIG, in Spanish) method, and proposing alternatives for geotourism development in
the studied area. The methodological process was based on: (i) the inventory and preliminary
selection of geosites; (ii) a semi-quantitative geosite assessment and proposal of travel itineraries
for geotourism; and (iii) the application of the strengths, weaknesses, opportunities, and threats
(SWOT) matrix to establish geotourism development strategies within a framework of sustainability.
The global assessment of scientific, tourist, and academic interests demonstrates that 25% of the
20 evaluated geosites have very high interest and 75% have high interest. The top three geosites with
the highest degrees of interest are the Chimborazo Volcano, known as ‘Earth’s Closest Point to the
Sun’, the Pallatanga geological fault, and the geosite named Comunidad Cacha. The SWOT analysis
reveals that travel itineraries that combine cultural heritage elements and geosites could offer a real
alternative for the region’s sustainable development through geotourism.

Keywords: geosites; geoheritage; geoconservation; geotourism; Chimborazo Volcano

1. Introduction

The term geodiversity was first introduced in the early nineties. According to Gray [1],
geodiversity is the variability of Earth’s surface materials, landforms, and physical pro-
cesses (abiotic elements). Materials are the rocks, soil, or the water; mountains, glaciers,
and lakes are examples of landforms; and soil formation, coastal erosion, and sediment
transport could be mentioned as processes. A definition of geodiversity, at a local scale,
was suggested as a synthesis of the landscape that includes geological, hydrogeological,
geomorphological, and climatic elements and processes [2]. The Law of Natural Heritage
and Biodiversity (BOE Law 42/2007) of Spain [3], defines it as “The variety of geological
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elements, including rocks, minerals, fossils, soils, landforms, formations and geological
units and landscapes that are the product and record of the evolution of the Earth”. Geodi-
versity must be regarded as part of the natural heritage of the territory, which shapes the
evolution of the planet and favors the development of life [4–6].

When the constituent elements of geodiversity have a high scientific value, they are
known as geological heritage or geoheritage [7,8]. Geoheritage is inherent to natural
heritage. It includes forms, elements, and structures originated by geological process and
has a crucial role in understanding Earth’s history [8,9].

Social perception of geodiversity and geological heritage has changed over time.
Today, it is considered a right, a need, and a duty to protect the environment through the
safeguard of geosites [10]. A geosite is a site where one or more geographically well-defined
elements of the geodiversity are present and it has a singular tourist, cultural, or scientific
value [2]. According to Prosser [10], geosites are sites with a high scientific value, assessed
quantitatively and qualitatively through an inventory, assessment, and selection process to
develop a management and threat prevention plan. Movable geological heritage also exists;
it refers to vulnerable elements of earth sciences exposed to natural degradation or human
action that can—or must—be protected ex situ. Their inclusion into a museum collection
often means the only chance for the preservation of these invaluable inanimate natural
monuments [11,12]. Geosites are sites with geological and geomorphological interest that
are part of geological heritage and promote its conservation. It is important to note that, in
recent years, there has been an increase in the number of UNESCO geoparks, reaching 161
in 2020 [13]. This circumstance has initiated many geosite characterization studies and the
development of assessment methods [9]. According to [14], the basic study and the securing
of geosites must follow a careful study that leads to their evaluation, while respecting their
original features, in order to inform the development of sustainable tourism.

For the characterization of geosites—inventory, diagnosis, promotion, and manage-
ment projects of geological resources have been carried out in several countries [15–18].
The Spanish Inventory of Places of Geological Interest (IELIG, acronym in Spanish) [19], as
referenced by Serrano and González [20], Brilha [2], and Medina [5], is one of the methods
widely used in geosite characterization [21–25]. The existing procedures are improving
and evolving to provide a global evaluation of the geological heritage, considering tourist,
scientific, and academic criteria. The geological routes (georoutes) are itineraries that aim
to the geological heritage’s value through the connection of different geosites. Examples
of these georoutes can be found in Spain, such as the “la pizarrilla” geotrails, in Jaén [26];
the geotrails in the Yanhuitlán Geopark, in the Mixteca Alta-Oaxaca (Mexico) [27], and the
geological itinerary of Sasso di Castalda in Italy [28].

Characterization procedures are based on the quantification of visual and susceptible
aspects and the use of statistical data analysis to evaluate geological characteristics of
geosites [17]. The IELIG method is the base methodology recommended by the ASGMI
(Ibero–American Association of Geological and Mining Surveys) for assessing sites of
geological interest in Ibero-America [29]. In Ecuador, it is the most commonly used
assessment method (e.g., [30–34]). In general terms, the IELIG method [19] builds upon the
work of experts who define the instrumental values of geosites (scientific, educational, and
recreational tourism potential), together with susceptibility to degradation and protection
priorities.

Geotourism has been conceptualized as the union of three components: forms, pro-
cesses, and tourism [35,36]. Forms include existing landscapes with their characteristics
and components. Processes include tectonic activity, weathering, deposition, etc. Tourism
refers to the human dimension reflected in tourist activities and the appreciation of geology
and geomorphology, among others [37,38]. The United Nations Educational, Scientific and
Cultural Organization (UNESCO) mentions that geotourism implies traveling through a
territory where the tourists explicitly understand that the landscape they observe contains
unique forms modeled by dynamic processes that have left visible traces [39,40].
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Geotourism cannot be reduced to ‘geological tourism’, but rather it is a broader
concept, where the focus of attention is the geosite, the geological phenomena, the tourist
use of the landscape potential, and the culture and customs of the local population [41,42].
It is essential to remember that the geotourism sector dynamics are prone to be influenced
by impacts and crises deriving from environmental, climatic, and social factors [7,43–46].

The target region of this study is the province of Chimborazo (Ecuador). This province
has remarkable cultural, natural, intangible, and geological characteristics with the po-
tential to be officially recognized as elements of natural or cultural heritage [47,48]. The
main economic activities in the area are agriculture, livestock breeding, mining, and hand-
icrafts [49,50]. Tourist activity is also noteworthy, although, despite the singularities of
the natural features and the efforts of regional and local authorities, geotourism does not
reach its full potential [51,52]. The main reason for this could be the absence of a strategic
plan that should include the inventory, characterization, and promotion of the territory’s
geological characteristics. One of the objectives of this study is to assess whether the socio-
economic development of the territory could be stimulated by the inclusion of geosites in
the tourist offer to complement traditional tourism.

The aim of this work is to evaluate the most notable geosites in the province of
Chimborazo (Ecuador) by applying the semi-quantitative method of the IELIG and an
analysis of strengths, weaknesses, opportunities, and threats (SWOT). We also wished to
propose itineraries for the development of geotourism in the region. To reach our goals, we
compiled and analyzed available information, and then employed international methods
for the assessment of geosites located in the study area. This work is meant to lay the
foundation for more detailed future works.

2. Geographical and Geological Setting
2.1. Geographical Setting

The Chimborazo province is in the south-central part of Ecuador, in the Inter-Andean
region or Sierra (Figure 1). Its capital, Riobamba, is located 210 km southwest of the city
of Quito (Ecuador). Its extension is of 6499.72 km2, and it has a population of 458,581 in-
habitants, 59.20% of which reside in rural areas [53]. From north to south, the province is
crossed by the Western and Eastern Cordilleras and the Inter-Andean valley (a tectonic
depression) between them [54]. The area is in the extreme southwest of the main volcanic
arc of Ecuador [55], where the Chimborazo volcano rises. This is the highest volcano in
the Northern Volcanic Zone of the Andes (6263 m above sea level) [56,57], and it is known
as the farthest point from the center of the earth (6384 km), two kilometers farther than
the Everest with its 6382 km [58,59]. There are also other volcanic centers that belong to
the volcanic domain of the Inter-Andean valley, although most of them are extinct (e.g.,
centers of Igualata, Llimpi-Huisla) [60].

2.2. Geological Setting

Regionally, Ecuador is divided into tectonostratigraphic zones that extend parallel
to the Northern Andes mountain range. From west to east, these are: (1) the oceanic
terranes of the coastal region and the Late-Cretaceous Western Cordillera [61–64]. (2) the
Chingual-Cosanga-Pallatanga-Puná (CCPP) dynamic fault system [65], which is also the
eastern tectonic limit of the “North Andean Sliver” and is related to the oblique subduction
of the Nazca plate. It formed a 20 to 30 km wide and 300 km long structural depression [60]
known as the Inter-Andean valley, includes a dozen older andesitic volcanic centers [65],
and deposits from the Miocene to the Holocene [60,63,66]. Finally, (3) the Eastern or Real
Cordillera, separated from the Inter-Andean Valley by the Peltetec Fault, which is the
continuation of the Romeral Fault of Colombia. This fault lies on a sequence of basal rocks
from the Paleozoic to the Cretaceous of the South American Plate [67].

The study area (Figure 2a,b) comprises the southern termination of the Ecuadorian
arc, where it is possible to identify volcanic centers from the late Pliocene to the Quaternary,
including three of the four types of volcanism [60]. The volcanic front of the Western
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Cordillera includes andesitic to dacitic composite stratovolcanoes, such as the El Chimb-
orazo volcano [68]. The volcanic center of the Eastern Cordillera is mainly composed of
andesitic stratovolcanoes, such as El Altar, a volcano that has not been studied in detail
so far [66]. Moreover, the andesitic volcanic centers of the Inter-Andean valley, such as
the Calpi and Licto slag cones, located in the Riobamba basin, are the result of the lower
inclination of the subduction zone caused by the subduction of the Carnegie Ridge [60],
and their period of activity is unknown [66].
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From the lithological point of view, in the Chimborazo province, geological units of
sedimentary, igneous, and metamorphic rocks emerge, ranging from the Triassic to alluvial
deposits of the Quaternary (Figure 2b). These geological formations are affected by the
sector’s structural dynamics associated with the locally known Pallatanga Fault (Figure 2a),
a NNE–SSW strike-slip fault that crosses the central part of the study area. This fault is
believed to have caused the 1797 Riobamba earthquake [69].

The oldest lithologies are exposed along the western margin of the Eastern Cordillera,
which marks the eastern border of the province (Figure 2a,b). They are composed of
S-type granitoids of the Tres Lagunas unit [71], followed by Jurassic rocks, such as the
metalavas and green schists of the Alao-Paute unit, metagrauvacas, and metavolcanites
of the Maguazo unit. The Peltetec ophiolite and the Guasuntos Jurassic Unit are also
discontinuously exposed, separated by the Peltetec Fault [71,72]. The Peltetec ophiolite
was interpreted as an oceanic lithospheric section generated in a suprasubduction environ-
ment [71].

The Cretaceous units are in the western part of the area, composed of basalts and
volcano-sediments of the oceanic plateau grouped in the Pallatanga unit and quartz-bearing
turbidites of the Yunguilla formation [73]. The Paleocene–Eocene geology is represented by
the andesites and volcanoclasts of the Macuchi formation and the Angamarca Group, which
includes black and grey turbidites of the Apagua Formation of the late Eocene. In the south
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of the province, pyroclastic rocks and andesitic to rhyolitic lavas of the Saraguro outcrop are
located. Moreover, in the central part, Miocene volcanoclastic deposits of the Zumbagua,
and Mio-Pliocene pyroclastic deposits of the Tarqui and Pisayambo volcanics can be
found. Other features are areas covered by glacial deposits, reworked pyroclasts (cangahua,
distal facies (Figure 2b)), primary hot gas-rich pyroclastic flows (tephra, pyroclastic flows,
ignimbrites), lahars and avalanches of the Quaternary [57,70], and intrusive rock outcrops.
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3. Materials and Methods

In this article, the IELIG method was applied to identify and select sites of geological
interest (SGI) or geosites. Additionally, we used a SWOT analysis to evaluate the relation-
ship between the geosites and the community. The proposed evaluation process was based
on the guidelines, classification and assessment of a previous study by García-Cortés [19].
The IELIG does not only identify geosite targets of the inventory and their geological
environment, but it also provides a diagnosis to design geoconservation measures. The
study was structured into three stages (Figure 3): (i) phase I consisted of compilation of
information, inventory, and preliminary selection of potential geosites; (ii) in phase II, the
IELIG method was applied for the assessment of the selected geosites; and finally, (iii) phase
III involved the strengths, weaknesses, opportunities, and threats (SWOT) analysis of the
geosites regarding their contribution to the geotourism development of the region.
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3.1. Inventory and Preliminary Selection of Geosites

In the first phase, we compiled information about the geosites from various sources,
such as scientific articles, theses, thematic cartography, and other studies developed in
the area. We also reviewed and correlated some points of the project framework ‘Registry
of geological and mining heritage and its impact on the defense and preservation of
geodiversity in Ecuador’ [74]. The aim of this phase was to obtain an overview of the
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geographical, social, and geological characteristics of the territory for the preliminary
selection of potential geosites.

3.2. Semi-Quantitative Geosite Assessment

The IELIG method [19] was applied for the semi-quantitative assessment of the list
of sites obtained in the preliminary phase (3.1). This procedure, unlike others, considers
protection priority (Pp), which is an essential indicator of priorities in conservation actions.
Table 1 shows the parameters and weights established by the IELIG to assess the scientific
(Sc.), academic (Ac.) and touristic (To.) value of each site. A score of 0 to 4 is assigned to
each parameter by experts.

Table 1. Established parameters to assess scientific (Sc.), academic (Ac.), and touristic (To.) interests based on [19]. Interest
value rank (0, 1, 2, 3, or 4). Weight (constant values in %). Interpretation: maximum (400), very high (267–400), high
(134–266), medium (50–134), low (<50).

Parameters

Value Interest of the Geosites

Scientific (Sc.) Academic (Ac.) Touristic (To.)

Value Weight Value Weight Value Weight

Representativeness

0 to 4

30

0 to 4

5

0 to 4

0
Standard or reference site 10 5 0

Knowledge of the site 15 0 0
State of conservation 10 5 0

Conditions of observation 10 5 5
Scarcity, rarity 15 5 0

Geological diversity 10 10 0
Educational values 0 20 0

Logistics infrastructure 0 15 5
Population density 0 5 5

Possibilities for public outreach (accessibility) 0 15 10
Size of site 0 0 15

Association with other natural elements 0 5 5
Beauty 0 5 20

Informative value 0 0 15
Possibility of recreational and leisure activities 0 0 5

Proximity to other places of interest 0 0 5
Socio-economic environment 0 0 10

Total (weight) 100 100 100

Total Sc. = value × weight Ac. = value × weight To. = value × weight

According to the values obtained for each geosite (i.e., scientific, academic, and tourist
interest) considered in the study area (Table 1), the aim is to analyze to what extent their
protection is a priority. Equation (1) is used to calculate the degradation susceptibility
(DS), based on parameters, such as fragility and vulnerability due to anthropic threats, and
assigned weights [19], shown in Table 2.

DS =
Fr. × Vul.

400
, (1)
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Table 2. Parameters of degradation susceptibility (DS) and weighs of each parameter. Interpretation
of DS: maximum (400), very high (400–200), high (199–68), medium (67–13), low (<13).

Parameter
Fragility (Fr.)

Value Weight

Geosite size
0 to 4

40
Vulnerability to looting 30

Natural hazards 30

Total (weight) 100

Total (Fr.) Fr. = value × weight

Parameter
Vulnerability (Vul.)

Value Weight

Proximity to infrastructures

0 to 4

20
Mining exploitation interest 15
Protected area designation 15

Indirect protection 15
Accessibility 15

Ownership status 10
Population density 5

Proximity to recreational areas 5

Total (weight) 100

Total (Vul.) Vul. = value × weight

From the degradation susceptibility (DS), Equations (2)–(4) were used to obtain the
values of protection priority (Pp) in its different domains: scientific Pp (Sc.), academic Pp
(Ac.), and tourist or recreational Pp (To.). The global protection priority Pp (Equation (5))
generates a comprehensive value about the state of the geosite; it can be used to update
the inventory of geosites, and to focus on those places that need restoration or application
of appropriate conservation measures. The different sub-parameters to assign each type
of value (0 to 4) are shown in detail in a study about the Spanish Inventory of Places of
Geological Interest (IELIG) in its 2013 version [19].

Pp (Sc.) = (ISc.)2 × DS × (1/4002), (2)

Pp (Ac.) = (IAc.)2 × DS × (1/4002), (3)

Pp (To.) = (ITo.)2 × DS × (1/4002), (4)

Pp =

(
ISc. + IAc. + ITo.

3

)2
× DS × (1/4002), (5)

3.3. SWOT Analysis

In phase III, we analyzed the strengths, weaknesses, opportunities, and threats
(SWOT) [75] of the assessed geosites. The analysis was developed with the participa-
tion of members of the academy and researchers. The aim of the SWOT analysis was to
determine the area’s potential in a more ambitious future project and to propose initiatives
for the efficient and effective use of the geosites and their environment. Finally, as a prod-
uct of this third phase, specific alternatives for optimizing geotourism were defined. The
interpretation of the analysis described in previous sections provided the basis for these
alternatives.
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4. Results
4.1. Geosite Inventory and Description

Based on the collected information, 20 geosites were selected for detailed analyses.
The selected sites have unique geological features determined by a specific geological
description. In Figure 4 and Table 3, the selected sites and their primary geological interest
type are shown. Figure 5 highlights the outstanding geological features of four of the
identified geosites.
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G3 Páramo de Navag (moorland) Geomorphological 

G4 Laguna de Colta (lagoon) Geomorphological 

G5 Mirador de Guano (viewpoint) Geomorphological 

G6 Pozo Chingazo (water well) Hydrogeological 

G7 Cascada de Tambo (waterfall) Geomorphological 

G8 Lahar Tungurahua (lahar) Geomorphological 

G9 Columnas de basalto de Guano (basalt columns) Volcanic 

G10 Comunidad Cacha (landscape-museum) Geomorphological 

G11 Laguna Comunidad Quero (lagoon) Geomorphological 
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Figure 4. Location map of sites of geological interest. Falla Pallatanga (G1); Páramo Guacona (G2); Páramo de Navag (G3);
Laguna de Colta (G4); Mirador de Guano (G5); Pozo Chingazo (G6); Cascada de Tambo (G7); Lahar Tungurahua (G8);
Columnas de basalto de Guano (G9); Comunidad Cacha (G10); Laguna Comunidad Quero (G11); Huellas Megaterios de
Riobamba (G12); Loma de Quito (G13); Termas Guayllabamba (G14); Cantera faldas Chimborazo (G15); Capas Volcánicas
de Chimborazo (G16); Cascada La Chorrera (G17); Dunas Palmira (G18); Volcán Chimborazo (G19); Volcán El Altar (G20).

Table 3. List of potential geosites in the study area, typological and classification.

No. Geosites Type of Geological Interest

G1 Falla Pallatanga (geologic fault) Structural
G2 Páramo Guacona (moorland) Geomorphological
G3 Páramo de Navag (moorland) Geomorphological
G4 Laguna de Colta (lagoon) Geomorphological
G5 Mirador de Guano (viewpoint) Geomorphological
G6 Pozo Chingazo (water well) Hydrogeological
G7 Cascada de Tambo (waterfall) Geomorphological
G8 Lahar Tungurahua (lahar) Geomorphological
G9 Columnas de basalto de Guano (basalt columns) Volcanic

G10 Comunidad Cacha (landscape-museum) Geomorphological
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Table 3. Cont.

No. Geosites Type of Geological Interest

G11 Laguna Comunidad Quero (lagoon) Geomorphological

G12 Huellas de Mastodontes de Riobamba
(mastodon footprints) Paleontological

G13 Loma de Quito (hill) Geomorphological
G14 Termas Guayllabamba (hot springs) Hydrogeological
G15 Cantera faldas Chimborazo (mine) Mining

G16 Capas Volcánicas de Chimborazo
(Tephra fallout deposit) Volcanic

G17 Cascada La Chorrera (waterfall) Geomorphological
G18 Dunas Palmira (dunes-desert) Geomorphological
G19 Volcán Chimborazo (volcano) Volcanic
G20 Volcán El Altar (volcano) Volcanic
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4.2. Geosite Assessment
4.2.1. Assessment of Scientific, Academic, and Tourist Interest

Table 4 presents the global results obtained from the average values of Sc., Ac., and
To. interest types (Av = (Sc. + Ac. + To.)/3) regarding the 20 sites assessed by the IELIG
method. The Chimborazo volcano has the highest and the Pozo Chingazo site the lowest
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average interest value (373.33/400 and 180.00/400, respectively, Table 4). In summary, 25%
of the geosites have very high interest and 75% high interest.

Table 4. Assessment geosites in terms of scientific (Sc.), academic (Ac.), touristic (To.), and average (Av.) interest, susceptibil-
ity to degradation (DS), vulnerability due to anthropic threats (Vul.), and scientific (Pp (Sc.)), academic (Pp (Ac.)), touristic
(Pp (To.)), and global (Pp) protection priority.

No. Geosites Sc. Ac. To. Av. DS Pp (Sc.) Pp (Ac.) Pp (To.) Pp

G1 Falla Pallatanga (geologic fault) 360 305 280 315.00 23.25 18.83 13.52 11.39 14.42
G2 Páramo Guacona (moorland) 265 310 255 276.67 22.50 9.88 13.51 9.14 10.76
G3 Páramo de Navag (moorland) 220 205 245 223.33 22.50 6.81 5.91 8.44 7.01
G4 Laguna de Colta (lagoon) 255 260 330 281.67 12.00 4.88 5.07 8.17 5.95
G5 Mirador de Guano (viewpoint) 195 225 260 226.67 43.75 10.40 13.84 18.48 14.05
G6 Pozo Chingazo (water well) 215 185 140 180.00 52.50 15.17 11.23 6.43 10.63
G7 Cascada de Tambo (waterfall) 215 210 205 210.00 66.50 19.21 18.33 17.47 18.33
G8 Lahar Tungurahua (lahar) 335 225 195 251.67 43.88 30.77 13.88 10.43 17.37
G9 Columnas de basalto de Guano (basalt columns) 250 235 190 225.00 43.75 17.09 15.10 9.87 13.84

G10 Comunidad Cacha
(landscape-museum) 350 305 270 308.33 40.63 31.10 23.62 18.51 24.14

G11 Laguna Comunidad Quero
(lagoon) 185 175 195 185.00 52.25 11.18 10.00 12.42 11.18

G12 Huellas Megaterios de Riobamba (megaterios footprints) 290 190 260 246.67 29.25 15.37 6.60 12.36 11.12
G13 Loma de Quito (hill) 195 225 165 195.00 44.00 10.46 13.92 7.49 10.46
G14 Termas Guayllabamba (hot springs) 200 215 275 230.00 63.38 15.84 18.31 29.95 20.95
G15 Cantera faldas Chimborazo (mine) 285 230 230 248.33 97.38 49.43 32.19 32.19 37.53
G16 Capas Volcánicas de Chimborazo (Tephra fallout deposit) 220 205 275 233.33 126.50 38.27 33.23 59.79 43.05
G17 Cascada La Chorrera (waterfall) 195 175 190 186.67 24.50 5.82 4.69 5.53 5.34
G18 Dunas Palmira (dunes-desert) 205 240 345 263.33 24.75 6.50 8.91 18.41 10.73
G19 Volcán Chimborazo (volcano) 380 370 370 373.33 15.75 14.21 13.48 13.48 13.72
G20 Volcán El Altar (volcano) 255 210 315 260.00 19.50 7.92 5.37 12.09 8.24

Six geosites, 30% of the total, reached the ‘very high’ range of scientific interest (Sc.).
The Chimborazo Volcano (Figure 6a), known as the farthest point from the center of the
earth (6384 km) [58,59], or ‘Earth’s Closest Point to the Sun’ [76], reached the highest score,
380. This significance of this geosite is increased by the facts that it is the highest mountain
in Ecuador and hosts a large wildlife reserve [57,77]. Of the fourteen remaining geosites
(70% of the total), the Páramo Guacona (Figure 6b) must be mentioned in the ‘high’ range
(Figure 6b) with 265 points. Its importance is due to the springs that emanate in this
moorland. It is located between the Llin and Navag moors. Currently, water harvesting,
and channeling projects are being designed in the area. From the geosite, it is possible to
appreciate the ‘V’ shape of the hydrographic systems, indicative of active in-depth erosion
and significant vertical uplifts.
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Regarding academic interest (Ac), four geosites (20%) have a ‘very high’ interest: the
Chimborazo Volcano (370), the Páramo Guacoma (310), the Falla Pallatanga (Figure 7a),
and the Cacha Community (Figure 7b) (with 305 points both). The Pallatanga Fault is a
regional strike-slip fault that caused the 1797 Riobamba earthquake [69]. It provoked an
approximately 956 kilometer long [78] longitudinal breach cutting through five provinces
of Ecuador. The Cacha Community comprises rustic huts and circular museums as part of
the Pucaratambo tourist center [79]. This geosite has added value due to its tremendous
cultural potential, as it is the cradle of the influential Puruhá people. The remaining sixteen
sites (80%) reached the ‘high’ range of interest, which proves that most geosites have great
relevance in this area. The Laguna de Colta geosite reached the highest score, 260 points, in
this category (Figure S1).
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Figure 7. Examples of geosites of great academic interest: (a) Falla Pallatanga (G1 in Table 3); (b) Comunidad Cacha (G10 in
Table 3).

The tourist interest (To.) assessment revealed that eight sites (40% of the total) are
within the ‘very high’ range, again with the Chimborazo Volcano (Figure 6b) in the first
position (370 points). The remaining twelve sites (60% of the 20 selected sites) are within
the ‘high’ range. The highest score in this category was obtained by the Mirador de Guano
geosite and the Riobamba Megaterios Footprints (see Figure 5c) (260 points, both). The
Mirador de Guano is situated on a rock formation of volcanic origin named Colina Lluishig.
From this viewpoint, it is possible to observe the Chimborazo volcano, El Altar volcano,
Tungurahua Volcano, and Guano city (Figure 8a). On the way up to the viewpoint, there
are monoliths carved in the middle of the 20th century. The most outstanding ones are the
fish, the vessel, and the face of the Inca (Figure 8b).
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The global assessments of the scientific, tourist, and academic interests are reflected in
Figure 9, merging the results of the 20 geosites.
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Figure 9. Tabulation of interests of the geosites as: (a) scientific; (b) academic; and (c) touristic.

4.2.2. Degradation Susceptibility

After the assessment of interest values, the susceptibility to degradation was evaluated
and classified into ‘high’, ‘medium’ and ‘low’ categories (Figure 10). Two geosites (10%),
the Capas Volcánicas de Chimborazo (126.50), and the Cantera faldas Chimborazo (97.375)
fall into the ‘high’ category. These sites are vulnerable due to their easy access and lack
of indirect protection. Moreover, 17 geosites (85%) are within the ‘medium’ range. The
clearest example of this group is the Cascada de Tambo, which obtained 66.50 points. In
the ‘low’ range, there is only one geosite (Laguna de Colta, 12) (5% of the total).
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4.2.3. Global Protection Priority

With the obtained degradation susceptibility (DS) values, the global protection priority
was calculated (Table 4). Moreover, 30% of the 20 geosites have a ‘high’ protection priority
level, which indicates the need for urgent or short-term protection measures. The top
three sites in this category are Capas Volcánicas de Chimborazo (43.05), Cantera faldas
Chimborazo (37.53), and Cacha Community (24.14). The remaining 14 geosites have a
‘medium’ Pp level and require protection measures in the medium- or long-term (Figure 11).
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4.3. SWOT Analysis

Table 5 shows a matrix with internal and external criteria. At the intersection of each
row and column, strategies were designed to improve geosite conservation and protection.

4.4. Proposed Itineraries Including Geosites

Based on the described data, the study proposes two travel itineraries as primary
strategies for the promotion of geotourism development. Besides the geosites of this study,
we also considered other outstanding cultural and tourist sites in the Chimborazo province.
Itinerary # 01, named ‘Geo-riqueza en Chimborazo’, includes geosites of distinguished
geological value and the most remarkable cultural sites of the area. Itinerary # 02, named
‘Geoturismo-Chimborazo’, includes geosites and tourist sites. The itineraries meet the
following criteria:

• Tourists can access each selected geosite in their own vehicle.
• There exists an infrastructure with accommodation and restaurants within short

distances.
• Tourist and recreational activities are offered.

The itinerary ‘Geo-riqueza en Chimborazo’ has a high level of difficulty (requires
good physical condition) and takes approximately three days to complete (Figure 12). For
this itinerary, three possible accesses are proposed that allow visiting the geosites and
connected cultural attractions and biodiversity features. Access (A) (Guayaquil-Riobamba
road) is an example of a tourist route that begins with a visit to the Pallatanga canton,
followed by the Colta canton and Riobamba, to end with the Guano canton where the
Chimborazo volcano is the most impressive geosite of this route. Access (B) (Baños-Penipe
road) starts from the Riobamba canton, goes on towards the coast, passing through Colta
and Pallatanga; on the way, it is possible to appreciate geo-forms, such as El Altar Volcano,
Carihuairazo Volcano, and Chimborazo Volcano (Figure S2). Access (C) (Arenal-San Juan
road) starts from the Chimborazo Volcano (Figure S2c) and goes towards the Pallatanga
fault. In this itinerary, sites such as the Balvanera Church, Guano Museum, and Monastery
Ruins are included, which also have geology-related aspects. For example, the Balvanera
Church was built with local basalt blocks (Figure S3).

The ‘Geoturismo-Chimborazo’ itinerary is of low difficulty level and takes one day.
Two possible accesses are proposed. Access (A) begins from the Falla de Pallatanga and
proceeds to the Riobamba canton. Access (B) starts from Riobamba and ends at the Falla
Pallatanga (Figure 13).
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Table 5. SWOT analysis of the study area. The matrix combines internal features (i.e., strengths and weaknesses) identified
by the letters (S) and (W) and external features (i.e., opportunities and threats) identified by letters (O) to (T).

External
Environment

Internal
Environment

Strengths (S) Weaknesses (W)

S1. Variety of attractions, such as
waterfalls, rock formations,
paleontological fragments.
S2. Easy access.
S3. Unique and relevant
landscape beauty.
S4. Valuable geological heritage.

W1. Limited promotion and
brochures about geosites and
geotourism.
W2. Lack of knowledge and
disinterest of the population.
W3. Lack of design of routes or
circuits with geological
information to visit the attractions.
W4. Some attractions are not
covered by geosite protection and
conservation.

Opportunities (O) Strategies: S + O Strategies: W + O

O1. Boost the economy of the province.
O2. Creation of routes.
O3. Diverse and flexible tourist alternatives.
O4. Geotourism as a state policy.

S1.O2. Develop plans focused on
promoting attractions through
geological routes for tourists.
S4.O4. Promote active national
cooperation through initiatives
that lead to better conservation of
natural, cultural, and intangible
heritage.

W1.O1. Generate geotourism
promotion projects that serve as
an alternative to improve the
population’s economic conditions
and seek to promote integrated
tourism.
W4.O4. Pursue scientific studies
and research on intervention
methods that allow the country to
face the dangers that threaten its
heritage.

Threats (T) Strategies: S + T Strategies: W + T

T1. Lack of private economic resources that facilitate the
implementation of programs and projects associated
with geological tourism.
T2. Environmental degradation.
T3. High-quality demand in tourism services to confront
the COVID-19.

S1.T2. Promote the development
of conservation and protection
plans for geosites with the
community’s support to prevent
deterioration.
S3.T1. Promote both national and
international recognition of assets
through cooperation with
government entities.

W2.T3. Involve experts in
preservation and conservation
issues to develop initiatives that
prevent deterioration and
improve the quality of tourism at
geosites.
W3.T1. Use marketing tools
appropriately to keep the
destination’s spirit alive and
thereby achieve its development
in the tourism market.
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5. Interpretation of Results and Discussion

Chimborazo province has geosites of great geological relevance that portray the
dynamics of the Andean tectonics. Some examples are the Pallatanga geological fault that
has been active for at least 600 ka [66], the volcanoes linked to the oblique convergence of
the Nazca plate, to the lower inclination of the subduction zone resulting from the Carnegie
Ridge [60], or those located to the south of the prolongation of the Grijalva fracture zone
(e.g., El Altar) [80–82]. Globally, these geological characteristics are reflected in the selection
of geosites. The sites were evaluated by the IELIG method [19], which proved that they
can provide a basis for the development of geotourism in the area. Geosites can promote
social development of territories with outstanding geological heritage [30,83].

In general, the existing volcanic geoheritage includes elements that are significant
tourist attractions [84]. The diversity of these elements in the province of Chimborazo offers
the opportunity to promote volcanology-related geo-education, awareness of geological
hazards, as well as understanding the resilience of communities that have experienced
the effects of volcanic activity. For example, the characteristic asymmetric shape of the
Chimborazo Volcano (it has three peaks Whymper, Politécnica, and Nicolás Martínez) is a
testimony of the great collapse of the Late Pleistocene and of the different stages of volcanic
eruptions [57]. This collapse produced a debris avalanche, the deposits of which are home
to more than 130,000 people today [56]. This geosite is a suitable example to demonstrate
the magnitude of volcanic phenomena.

According to the average value of scientific, academic, and tourist interests, 25%
of geosites have ‘very high’ interest and 75% have ‘high’ interest. In the assessment of
scientific interest, the highest weight of the seven parameters considered by the IELIG
methodology belongs to representativeness (30%). Seven out of the 20 studied geosites
received the maximum score (point: 4) to this parameter, which is proof that they faithfully
record the geological characteristics of the territory. One of the most important geosites is
the Chimborazo volcano, the highest peak of the Northern Andes [57]. It has been the object
of study, mainly in the fields of glacial retreat and volcanic activity, by several eminent
geoscientists, such as Humboldt, a German explorer, the father of modern biogeography,
who made early descriptions of Chimborazo [85], and influenced other scientists, such as
Darwin and Whymper. Numerous scientific articles have been published about this geosite
(e.g., [56,57,67,86–88]), and the Chimborazo volcano has the maximum value in scientific
interest (Table 4).

In academic assessment, the parameter of educational values receives the highest
weight (20%) of the 12 parameters. Regarding educational values, the geosites score be-
tween 2 and 4 points, which suggests that teaching materials are already in use or that
the site has a potential at some level of the educational system (schools, colleges, universi-
ties). Sites such as the Chimborazo volcano, Pallatanga fault, or Paramo Guacona stand
out. The landscape is characterized by high Andean moorlands (paramos). Geosites like
the Páramo Guacona also have secondary values related to hydrogeology, the environ-
ment, or biodiversity, in addition to their evident geomorphological interest. Thus, they
provide opportunities to develop educational initiatives related to geological heritage or
environmental protection and conservation.

Beauty carries the highest weight (20%) among the 11 parameters of touristic as-
sessment. Pozo Chingazo obtained the lowest score (1 point) to this parameter. The top
three geosites regarding touristic interest are Volcán Chimborazo, Dunas Palmira, and
Laguna de Colta, all of which are popular tourist destinations that also offer alternative
activities, such as hiking, biking, and climbing (Volcán Chimborazo); camping, ecotourism,
and photography (Dunas Palmira); or boating, kayaking, birdwatching, cycling, hiking,
religious tourism, archaeological tourism, and camping (Laguna de Colta). Additionally,
these geosites have good access roads and are associated with natural and cultural heritage
elements. One example of this is the Chimborazo volcano where a wildlife reserve is home
to endemic species, such as the critically endangered condor or Andean members of the
camelid family (vicuñas, llamas, alpacas) besides other wild animals and plants. This site
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also hosts cultural activities, like the ‘Hieleros del Chimborazo’ route, which honors the
millennium-old tradition of ice mining for culinary purposes, an activity in decline due to
the retreat of the glacier.

Most geosites reached high scores in terms of scientific, educational, and tourist
interests. Regarding degradation susceptibility and protection priority, however, the geosite
with the highest score is the Capas Volcánicas de Chimborazo (G16) (Figure 4, Table 3).
This geosite, which presents erosional unconformities and interlayered glacial deposits
(Last Glacial Maximum) [57], has been an object of study by the local and international
geoscientific community, mostly due to its ease of access, as it is adjacent to the main
road (Arenal–San Juan). This condition also makes it exposed to anthropic activities,
which increases its vulnerability. The least susceptible geosite is the Laguna de Colta (G4)
(Figure S1, Table 3), a site of considerable dimensions, as its length exceeds 2.5 km, and it
has an area of approximately 2 km2. The low susceptibility value suggests that this site is
more resistant to anthropic actions probably due to the adequate plans for environmental
management and ecotourism implemented here.

The geotourism envisioned for the analyzed geosites would combine landscape,
entertainment, adventure, and gastronomy. Applying the biosecurity protocols demanded
by the present situation (i.e., the COVID-19 pandemic), these plans could be put into action
immediately and directly benefit local people. However, the geosites in the study area
have one common threat: climate change. This problem has already caused alterations
in one of the emblematic geosites of the area; between 1986 and 2013, the ice cover of the
Chimborazo volcano decreased by 21% [86]. The effect of climate change on geosites is one
of the ten priority areas of UNESCO’s Global Geopark program [89]. The loss of the last
Chimborazo glacier, widely known because of the famous case of the last Chimborazo ice
maker [87], is one of the cultural consequences of climate change. This example provides
an opportunity to raise awareness in visitors and the surrounding community.

From the methodological point of view, semi-quantitative evaluation of geosites [2,19]
is a useful approach to establish the bases of future geotourism perspectives in a given
territory. One of its advantages is the identification of weak points in the analyzed interests,
warranting objectivity in the study. For the obtained results to be more accurate, it is
recommended to use a combination of several methods/methodologies [90]. However,
the IELIG method [19], a reference method in Ibero-America according to the ASGMI
(Ibero-American Association of Geological and Mining Studies), was the only methodology
applied here, and it yielded satisfactory results [29].

The IELIG method can be used in a wide range of areas, not only for protected wild-
lands. It can be applied to biological corridors, cantons, and other cases where geological
diversity can be considered a resource, as proven by geological interest point assessment
studies in Ecuador [30–34] and in other countries [23,25]. The IELIG method has a special
feature within its vulnerability indicators. Unlike other procedures, such as the Brilha
method [2], the IELIG establishes a parameter named ‘Mining exploitation interest’ for
the assessment of a factor that presents a threat to geological heritage. This parameter
distinguishes sites of mining–metallogenic interest, geological formations that are products
or are close to mining operations, sites of mineralogical interest, and sites of mining interest
due to their excellent exposure.

The SWOT analysis is a useful tool that complements geosite assessment and seeks
to examine the geotourism potential of each geosite. It provides essential information
about the applicability and viability of geotourism development. It also prioritizes the
necessity to relate all the potential of the area including biodiversity, geodiversity, and
culture [4,91,92]. The SWOT analysis has become a basic method to comprehensively
examine unstable situations in sustainable development and has been applied in various
studies related to geoparks [93–97].

The SWOT analysis contributed to the development of proposals, such as geotourism
promotion projects and travel itineraries [30]. It also highlighted the need for provincial,
cantonal, and parochial authorities to collaborate with academics and businesses to advance
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the sustainable development of geosites. Finally, it resulted in the proposal of itineraries
providing specific information about the routes (e.g., duration, visit sites, difficulty), their
interests (e.g., scientific, academic, and tourist interests of the geosites), and impact (e.g.,
compatibility with current activities). The itineraries were based on the results of the
described geosite assessment and on successful examples of geotourism development
initiatives (e.g., [98–100]). They might have a substantial influence on the opportunities of
rural sectors.

6. Conclusions

According to the results of the IELIG method applied in this study, 25% of the assessed
geosites have ‘very high’ and 75% have ‘high’ average interest values taking into account
their scientific, academic and tourist interests. The Chimborazo Volcano, known as ‘Earth’s
Closest Point to the Sun’, obtained the highest score in the assessment. The DS values
demonstrate that those geosites that are located close to infrastructures, such as main
roads, or that lack any indirect protection, have high vulnerability values due to anthropic
threats. Some geosites require immediate intervention. Moreover, 30% of the 20 geosites
reaches a ‘high’ protection priority level, while the rest falls into the ‘medium’ protection
priority category. Urgent protection measures should be implemented in the first group,
but the rest of the sites meet the necessary conditions for geotourism development, such
as accessibility and connectivity, other associated recreational activities, tourism facilities
and services, and state of conservation. The IELIG method makes it possible to consider
environmental-territorial characteristics in the assessment; therefore, it would be equally
suitable for the evaluation of other areas in the region. Further studies, however, must be
specifically adapted to the methodology of the central administration of the country.

The SWOT analysis shows that one of the greatest strengths of the selected geosites
is their outstanding heritage value and their historical and cultural connections, through
which they could offer excellent opportunities to foster geotourism and to boost the
economy of Chimborazo province and the country. A key strategy involves geotourism
promotion projects based on travel itineraries (such as those suggested in this article named
‘Geo-riquezas en Chimborazo’ and ‘Geoturismo-Chimborazo’) so that tourists can discover
the geosites, their landscape, their culture, and enjoy a unique experience of knowledge,
protection, and sustainable development. The two described travel itineraries are practical
and feasible proposals that could become real alternatives to stimulate the development of
the region while protecting the environment.

In general, the geotourism proposed here (itineraries) represents a sustainable enter-
prise that is compatible with the current socioeconomic activities (e.g., agriculture, livestock
breeding, industry, trading, apiculture, and mining) of the area. Furthermore, these actions
can contribute to the improvement of the quality of life of local people.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/su13094624/s1, Figure S1: One of the most visited geosites in the province of Chimborazo (a)
“Colta” lagoon front landscape; (b) side landscape. Figure S2: three main geoforms of the Chimborazo
province (a) Volcán Altar; (b) Volcán Carihuairazo; (c) Volcán Chimborazo; Figure S3: Representative
geosite of the Chimborazo province (a) lateral part of the “Iglesia Balvanera”; (b) relic of the church;
(c) front and striking part of the church.
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