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Abstract: In the last decade, in the mining district of Zaruma-Portovelo, there has been significant
land subsidence related to uncontrolled mining activity. The purpose of this work was to carry out
a surface and underground geomechanical characterization of a mining sector north of the city of
Zaruma that allows the definition of potentially unstable areas susceptible to the mass movement.
The methodology used consists of the following stages: (i) compilation of previous studies; (ii) surface
and underground characterization of rocky material to establish its susceptibility to mass movement;
(iii) interpretation of results; and (iv) proposal of action measures. Among the most relevant results, it
stands out that 26.1% of the 23 stations characterized on the surface present conditions that vary from
potentially unstable to unstable. In underground galleries, the studied mean values of the 17 stations
indicate that the rock has a medium to good quality, representing a medium susceptibility to gallery
destabilization. The results obtained for the surface areas (depths up to 50 m, where altered materials
predominate) and the underground areas (depths > 50 m, where the alterations are specific) can be
used to identify the areas with a more significant potential for instability. For both cases, it has been
possible to define specific monitoring, control, and planning actions for sensitive areas.

Keywords: Zaruma; mining; geomechanical characterization; landslide susceptibility; land instability;
subsidence

1. Introduction

Geological events related to land instability (mass movements, rock falls, and subsi-
dence) are natural phenomena conditioned, fundamentally, by soil and rock properties,
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topography, rainfall, and vegetation [1–6]. In general, instabilities have caused significant
damage to civil infrastructure with significant economic losses [7–11]. However, the most
notable thing is that these phenomena put people’s lives at risk [5,12] and cause irreversible
environmental damage [8,9,13].

According to a number of studies [12,14,15], human activity also has a notable influ-
ence on this geological phenomenon type, mainly due to the induced modifications in
the land. A particular case of these activities is mining, which, when properly developed,
favors the economy and develops the regions where a resource is exploited. In uncontrolled
mines or without the due technical considerations, adverse effects can be caused in environ-
mental aspects and ground instability [16–19]. Subsidence is a frequent geological problem
in extractive activities of solid resources [9,13,20–31] and liquid resources [10,32,33]. If
mining operations are developed in urban environments, it is necessary to carry out
geological–geotechnical studies to establish this safety initiative. Thus, “urban geoscience”
has been revealed as a new interdisciplinary field necessary in city planning and devel-
opment to evaluate the geological environment and make possible the subsoil’s strategic
management [8].

Land susceptibility to instability and its geomechanical characterization have been
addressed in various studies [10,13,21,23,26,28,32,34–44]. In these contributions, methods
were developed to identify and to zone potential risk areas and, in a complementary way,
to facilitate the implementation of preventive strategies that provide solutions to current
instability problems [45].

The studied area corresponds to the north of Zaruma city (Ecuador). This locality is
located in Southern Ecuador (Figure 1a), in the El Oro province, and it is part of the central
gold-bearing districts [46–48]. This gold potential has allowed the development of intense
and extensive mining activity through different types of exploitation. Thus, in the Zaruma
environment, it is possible to identify both large legal mines and illegal mines (that are
sometimes just a few dozen meters from the surface, without stabilization strategies). From
the orographic point of view, the environment presents high slopes where mass movements
linked to triggers such as heavy rainfalls, deforestation, seismic activity, civil works (e.g.,
roads), and mining are frequent. Since 2015, in addition to occasional landslides, there have
been several subsidence events linked to the existence of illegal gold mining [16,38,49–51].
One of the most relevant subsidence events was the one that originated the collapse of the
La Inmaculada School in the center of Zaruma in 2017 [49,51]. This event caused an increase
in restrictions on mining activity below the urban area of Zaruma (Figure 1b) defined in
the decree of the mining exclusion zone (EZ) (Ministerial Agreement No. 2017-002 [52]),
issued by the relevant body of the Ecuadorian state (Ministry of Mining) [53]. Due to the
city’s subsidence reports, in 2017, the exclusion area had to be increased, covering the
entire city. Furthermore, to prevent illegal mining from weakening the area, the decree was
modified again, prohibiting mining activity in approximately 2.15 km2 around Zaruma city.
The study area encompasses part of the last mining exclusion zone (Figure 1b). Zaruma
was selected as the case study due to its importance as a gold deposit in Ecuador and its
particular geologic, geomorphologic, climatic, and orographic conditions. The specific
study area was chosen to consider the possibility of accessing underground galleries in
current exploitation (outside the exclusion zone) and without exploitation (within the
exclusion area) belonging to the BIRA S.A. mining company.

The aim of this study was to carry out a surface and underground geological–geomechanical
characterization of an area of 0.7 km2 in the north of Zaruma. The plan was to: (i) define
areas susceptible to subsidence based on the geomechanical characteristics of the rocks;
(ii) identify areas of high susceptibility where mining activity must optimize its exploitation
procedure to guarantee stability underground and on the surface; and (iii) propose mea-
sures to be taken regarding mining activities in the underground and land use planning on
the surface.
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Figure 1. (a) Zaruma (El Oro, Ecuador) location; (b) location of the study area in the North of Zaruma. EZ: exclusion zone.
Satellite image source [54].

2. Study Area

The morphology of Zaruma is characterized by steep slopes, rounded mountain
ranges, and heights between 1150 and 2800 m a.s.l. The predominant geoforms of the area
corresponds to heterogeneous slopes, with medium to strong slopes [49].

The lithology within the study area (Figure 2a,b) consists of metamorphic, igneous, and
sedimentary rocks ranging from the Precambrian–Paleozoic to the Quaternary age [55]. The
basement rocks are metamorphic rocks (Triassic). Above them, massive andesitic lavas are
unconformably intruded by small plutons of diorite to granodiorite composition (Lower
Cretaceous). Felsic volcanic lavas, pyroclastics, and rhyolitic flows (Tertiary–Miocene)
unconformably cap all of these units. Finally, Quaternary alluvial and colluvial deposits can
be recognized along the Amarillo and Calera rivers [56]. According to Van Thournout et al.,
1996, the mineralization in this area was originated by collapse and post-collapse rhyolitic
activity. The Zaruma area (Figure 2b) is part of the epithermal vein system (Zaruma-
Portovelo). This epithermal vein system is the result of hydrothermal processes close to a
Miocene volcano that produced an andesitic to dacitic sequence. The identified ore and
gangue mineral assemblages are typical for intermediate sulfidation epithermal gold vein
deposits (Au ± Ag ± Cu) associated with Early Miocene continental arc magmatism [55,57].
The gold exploitation in Zaruma is trough underground mining used in epithermal deposits
of in the vein system. The galleries are horizontal excavations into the side of hills or
mountains, and levels are excavated horizontally off the decline to access the ore body.
The distance between exploitation levels is approximately 30 m. In general, the deposit is
extracted using the chambers and pillars method or a cut and fill method in which empty
spaces are filled as the mineral is extracted.
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Figure 2. (a) Location of the Zaruma-Portovelo deposit on the simplified geological map of Ecuador. (b) Zaruma-Portovelo
geological map, with prominent veins, structures, and geological formations. Adapted from [58]; Adapted with permission
from ref. [59]. Copyright 2009 Universidad de Buenos Aires.

Geomorphologically, the most prominent feature is the rugged relief corresponding
to the Southern Andes of Ecuador, characterized by the marked fluvial incision and the
absence of stratovolcanoes [60]. Zaruma’s climate is classified as subtropical, dry from
May to November, and humid from December to April. In the study area, as occurs in
sub-tropical environments, high rainfall during six months of the year originates essential
chemical processes that generate deep weathering profiles. Regarding the vegetation cover,
the area initially corresponded to a premontane forest. Currently, many of these areas
are used for agriculture and livestock. The alteration and transformation of the rock into
saprolite and residual soils represent an essential determining factor when evaluating land
stability. Zaruma city occupies an area of approximately 1 km2 and 10,000 inhabitants. The
main economic activities are mining, agriculture, livestock, and tourism.

3. Materials and Methods

The procedure followed in this study is divided into three main different phases
(Figure 3): (i) information processing and systematization, (ii) surface and underground
survey, and (iii) interpretation and evaluation of results.
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Figure 3. Methodology scheme used for the assessment of instability phenomena in the north of the Zaruma mining zone.

3.1. Stage I: Information Processing and Systematization

The study began with the collection and review of previous studies carried out in the
area [61–64], specifically, with a collection of data from boreholes, topography, and general
geological maps provided, in most cases, by BIRA S.A. mining company. The fieldwork
campaign was designed in order to complete the data needed to determine the area’s state
of stability at the surface and underground level. The characterization methods are detailed
in Section 3.2.

3.2. Stage II: Surface and Underground Survey

This stage included the geological and geomechanical characterization of rocks on
the surface (outcrops) [65] and underground (galleries) [34,35]. During the first sampling
campaign, 23 stations were selected for geologic and geomechanical characterization
through a study of outcrops. In the second sampling campaign, 17 stations were taken for
geologic and geomechanical characterization through a study of galleries. The number
of stations studied was limited due to budget constraints, access permits, terrain, and
gallery conditions. This aim of this phase of the work was to obtain susceptibility maps of
instability at the surface and underground level.

3.2.1. Surface Characterization

The surface study addressed the prominent outcrop characterization and 23 stations
in the study area (Figure 4). The number of stations and location depend on the favorable
terrain conditions (existing outcrops and accessibility). At first, the primary lithology to be
characterized in each sampling station was defined from the general lithology identified
from the outcropping study. Next, through specific theoretical–practical methodology
application used in landslides by various authors [65–69], the rocks’ geomechanical charac-
teristics were defined (Table 1) by assigning evaluations made following expert criteria.
The selected parameters were lithology, geological structure, morphometry, discontinuity,
water, vegetable cover, seismic activity, and weathering rank, which were evaluated from 0
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to 4 (Table S1) based on the conditions observed in the field. This method allows the sus-
ceptibility level to landslide (Table 2) to be defined. The susceptibility level is a qualitative
value (I to V), and it is related to the susceptibility coefficient (SC) estimated [70,71]. Thus,
the grade or susceptibility level are: I for SC < 5; II for 5 < SC < 10; III for 10 < SC > 15;
IV for 15 < SC < 20; and V for SC > 20. As a result, susceptibility maps of instability were
prepared from the geomechanical evaluations obtained by using the geostatistical kriging
tool that allows the values to be interpolated.

Figure 4. (a) Position of the study area and location of the stations defined for surface characterization in this work. (b) Detail
of the surface stations [54].

Table 1. Main parameters and weights assigned to rock massifs in the susceptibility coefficient
estimation [65–69].

Parameters Weight

Lithology (L) 0 to 4
Geological structure (Gs) 0 to 4

Morphometry (M) 0 to 4
Discontinuity (D) 0 to 4

Water (W) 0 to 3
Vegetable cover (Vc) 0 to 3

Seismic (S) 0 to 4
Weathering Rank (Wr) 0 to 4

SC: (L + Gs + M + D + W + Vc + S + Wr) 0 to 30
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Table 2. Landslide susceptibility classification for rock massifs [65–69].

Susceptibility Level Susceptibility Coefficient (SC) Remark

I Very low: SC < 5.0 Stable conditions.
II Low: 5 < SC < 10 Stable conditions. Monitoring is required.
III Medium: 10 < SC < 15 Predominantly stable conditions. Systematic monitoring is required.
IV High: 15 < SC < 20 Potentially unstable conditions.
V Very high: SC > 20 Unstable conditions.

3.2.2. Underground Characterization

The underground characterization was carried out in mining galleries at depths
greater than 50 m, with the permission of Bienes Raices S.A. mining company (BIRA S.A.).
Specifically, this stage focused on the geological and geomechanical analysis of the rock
samples from the 17 sampling stations (Figure 5) located in the mining galleries. The
location of the stations was selected based on the accessibility conditions and galleries
that are outside the mining exclusion zone. As in the surface characterization phase, the
stage was to identify the most representative rock types in each of the defined stations
and their main characteristics (physical and chemical alterations). Next, an instability
evaluation of the galleries was carried out using two evaluation methodologies applied for
the 17 underground stations: (i) Q-Barton Index [34] and (ii) Mining Rock Mass Rating [35],
which allow the comparison and validation of the rock quality results. The Mining Rock
Mass Rating (MRMR) method was applied in order to validate Q-Barton method. Both
methods allow zoning of the rock quality and its susceptibility level, based on the valuation
interpolation using the kriging tool.

Figure 5. (a) Location of defined stations for underground characterization (in galleries) in this work. (b) Detail of the
stations’ position on the underground work plan provided by BIRA S.A mining company. Levels between 1214 and 1318 m.
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Q-Barton Index

The method proposed by Barton, Lien, and Lunde [34], evaluates the rocks’ geome-
chanical behavior (Equation (1)) and establishes a qualitative classification of their quality
(Table 3) through the use of six parameters: rock quality designation (RQD) [72,73], joint
roughness number (Jr), joint set number (Jn), joint alteration number (Ja), joint water reduc-
tion factor (Jw), and stress reduction factor (SFR) [34] (Table S2). These parameters were
obtained from field surveys in existing tunnels, which allow the issuance of criteria for
the sizing of new tunnels. In order to be able to compare the surface and underground
characterization, a parameter defined in the surface rocks (susceptibility level, Table 2) is
also included in Table 3. The susceptibility level is a qualitative value (I to V) included in
the analysis and inspired by previous work [74–76], the authors of which proposed a direct
relationship between Q-Barton RQD and susceptibility. In addition, due to the lack of
coincidence in the number of classes between Q-Barton (9) and the levels of susceptibility
(5), the value of susceptibility III (3/5) was assigned to the fair value (5/9).

Q = (RQD/Jn)*(Jr/Ja)*(Jw/SRF) (1)

Table 3. Rock quality according to the Q Index [34]. * Based on susceptibility level values defined
in Table 2.

Q-Barton Rock Massif Quality Susceptibility Level *

0.001–0.01 Exceptionally poor V
0.01–0.1 Extremely poor V

0.1–1 Very poor IV
1–4 Poor IV

4–10 Fair III
10–40 Good II

40–100 Very good II
100–400 Extremely good I

400–1000 Exceptionally good I

Mining Rock Mass Rating (MRMR)

The MRMR method proposed by Reference [35] is used to perform rock mass valuation
including aspects related to mining and combines several parameters for the mass valuation
(RMR [77]), considering such criteria as mining-induced stresses (Cs), blasting effects (Cb),
weathering (Cw), and joint orientation (Co) (Table S3). Using the weighted sum of different
parameters, and with Equation (2), the MRMR value was obtained.

MRMR = RMR*Cw*Co*Cs*Cb, (2)

From the MRMR values obtained, the massif’s behavior can be qualitatively character-
ized (Table 4).

Table 4. Rock quality according to MRMR [35]. * Susceptibility level values defined from Table 2.

MRMR Rock Massif Quality Susceptibility Level *

0–20 Very poor V
20–40 Poor IV
40–60 Fair III
60–80 Good II

80–100 Very good I

A parameter defined for the surface rocks was added to the qualitative qualification of
the rock quality (susceptibility level, Tables 2 and 4) in order to enable comparisons between
the surface and underground characterization. The susceptibility level is a qualitative value
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(I to V) included in the analysis and inspired by previous work [78,79], the authors of which
proposed a direct relationship between MRMR and susceptibility. In this case, 5 levels of
susceptibility were assigned to 5 levels of MRMR analysis.

3.3. Stage III: Interpretation of Results and Stabilization Proposals

Based on the susceptibility level to the mass movement (surface analysis) and rockfall
(underground analysis), the obtained results (susceptibility level maps) were evaluated to
establish recommendations for stabilization strategies in the most susceptible sectors.

4. Results
4.1. Surface Characterization
4.1.1. Geological Characterization

The data collected in surface outcrops made it possible to determine the primary
lithology. Thus, (i) altered rhyolitic tuff to the NE of the study area, (ii) porphyritic andesite
and siliceous breccia to the S, and (iii) intrusive diorite to the NW were identified. The
predominant structural trend in the area is NS (Figure 6a). The lithological reconstruction
(Figure 6b) using the data of previously carried out perforations in the study area shows
that there are potent layers of andesite and porphyritic andesite at the base of this regular
column without relevant alteration (thicknesses greater than 45 m). Overlaying these layers,
an intercalation of altered tuff/tuff/tuff agglomerate (approximately 45 m) is identified.
Over this intercalation, a layer of white fractured breccia (5 m) is identified, and finally, in
the upper 5 m, weathered rock (saprolite) of brown color appears.

Figure 6. (a) Geological map of the study area. (b) Stratigraphic column of the substrate rocks in the study area obtained
from a survey provided by BIRA S.A. mining company. Drilling takes place in the yellow dot.
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4.1.2. Lithological Sampling and Characterization

The detailed reconnaissance of the 23 stations allowed the detailed geological char-
acterization through the identification, sampling, and analysis of rock samples (defined
most often as rhyolitic tuff and porphyritic andesite), although with characteristics of
saprolite and weathered rock. Table 5 presents the lithological characterization and the
main description of these surface samples.

Table 5. Lithological characterization of surface samples.

Station Lithology
(Original Rock) Main Description

1 Rhyolitic tuff Saprolite

2 Rhyolitic tuff Rock somewhat weathered and with some weathering degree

3 Rhyolitic tuff Saprolite

4 Rhyolitic tuff Rock somewhat weathered and with some weathering degree

5 Porphyritic andesite Rock somewhat weathered and with some weathering degree

6,9 Rhyolitic tuff Saprolite

7 Rhyolitic tuff Rock somewhat weathered and with some weathering degree

8 Rhyolitic tuff Rock somewhat weathered and with some weathering degree

10 Porphyritic andesite Saprolite

11 Rhyolitic tuff Rock somewhat weathered and with some weathering degree

12 Siliceous breccia Rock somewhat weathered and with some weathering degree

13,14 Diorite intrusive Saprolite

15 Diorite intrusive Rock somewhat weathered and with some weathering degree

16 Porphyritic andesite Saprolite

17,18 Porphyritic andesite Saprolite

19 Diorite intrusive Rock somewhat weathered and with some weathering degree

20 Porphyritic andesite Saprolite

21,22,23 Porphyritic andesite Saprolite

The results obtained from evaluating susceptibility level in rocky massifs and altered
rock indicate that: 26.1% of the stations present conditions that vary from potentially
unstable to unstable. The remaining 73.9% are stable, and they need monitoring (Table 6
and Figure 7b). Figure 7a shows a zoning map of the studied area based on the obtained
susceptibility conditions.

Table 6. Global results of the susceptibility level (Table 1) and landslide susceptibility categories (Table 2) estimated for
23 stations.

Station Susceptibility Coefficient Susceptibility Level Observations

1 16.5 IV Potentially unstable conditions.

2 12.5 III Predominantly stable conditions.
Systematic monitoring is required.

3 16 IV Potentially unstable conditions.4 16.5

5 9 II Stable conditions. Monitoring is required.

6 16 IV Potentially unstable conditions.
7 10.5 III Predominantly stable conditions.

Systematic monitoring is required.8 10.5

9 12.5 IV Potentially unstable conditions.

10 10.5 III Predominantly stable conditions.
Systematic monitoring is required.
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Table 6. Cont.

Station Susceptibility Coefficient Susceptibility Level Observations

11 6.5
II Stable conditions. Monitoring is required.

12 5.5

13 9.5

III
Predominantly stable conditions.

Systematic monitoring is required.

14 10
15 13
16 9.5
17 9

18 8 II Stable conditions. Monitoring is required.19 8

20 20.5 V Unstable conditions.

21 14 III Predominantly stable conditions.
Systematic monitoring is required.

22 7.5 II Stable conditions. Monitoring is required.23 7.5

Figure 7. (a) Susceptibility level map of instabilities built based on the data obtained on the surface and (b) classification of
the results obtained for landslide susceptibility, considering the 23 surface stations.

4.2. Underground Characterization
4.2.1. Geological Characterization

The lithologies identified in the 17 underground stations evaluated are described
in Table 7. The primary lithologies identified, in addition to the ore materials (quartz
veins of approximately 2 m), are andesite, diorite, microdiorite, and rhyolitic tuff. It was
also possible to define the degree of fracturing and alteration of these rocks (Table 7) in
this study.
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Table 7. Lithological characterization of underground samples.

Stations Lithology (L) General Description

1,6 Andesite Slightly weathered and fractured andesite, with a greenish-grey hue. The rocky massif
is fractured into blocks, with rough surfaces and little evidence of deterioration.

2 Microdiorite Slightly deteriorated and fractured microdiorite, with rough surfaces without
deterioration. Greenish-grey rock.

3,4,8 Andesite Andesite without evidence of deterioration, of a greenish-grey hue. The rocky massif
is moderately fractured, with fresh and rough surfaces.

5,7 Microdiorite Microdiorite without deterioration, with a greenish-grey hue, presents few fractures
with very rough surfaces and without deterioration.

9 Andesite with dioritic dike Slightly deteriorated rock with a light green hue. The rocky massif has block
fracturing and rough fracture surfaces with ferrous spots.

10,13,16 Porphyritic andesite Slightly deteriorated rock with a greenish-grey hue, showing areas of mylonites. The
rocky massif presents fracturing in blocks with rough surfaces and high deterioration.

11 Diorite Slightly deteriorated rock with a greenish-gray hue, the rocky massif presents intense
fracturing with rough surfaces without deterioration.

12,17 Rhyolitic tuff Porous rocks slightly altered and deteriorated, with a pink hue.

14,15 Dioritic intrusive Rock without deterioration, fractured with rough surfaces, of a greenish-gray hue.

4.2.2. Geomechanical Characterization

The evaluation of the underground rocky massif quality, through the analysis of the
different mine stations using the Q-Barton method, indicates that 41.18% of the evalu-
ated stations correspond to the rocky massif of good to very good quality (detachment
susceptibility of II in Table 8), while 35.29% correspond to fair quality rock (detachment
susceptibility III in Table 8), and finally 23.53% represent rock of poor quality (detachment
susceptibility in Table 9) (Figure 8b). Figure 8a shows a map zoning the studied area based
on the rock mass quality obtained, based on the Q-Barton method.

Table 8. Results obtained for underground stations by the Q-Barton method.

Station Jn Jr Ja Jw RQD (%) SRF Q-Barton
Index

Qualitative
Rating

Susceptibility
Level

1 4 2.00 2.00 1.00 94.72 1.00 23.68 Good II

2 4 2.00 2.00 0.66 96.02 5.00 3.17 Poor IV

3 5 2.00 0.80 1.00 90.21 1.00 45.11 Very Good II

4 5 1.50 0.90 0.66 90.60 1.50 13.29 Good II

5 9 2.00 0.90 0.50 82.66 1.50 7.20 Fair III

6 3 1.50 2.00 0.50 96.31 1.00 12.04 Good II

7 3 2.00 2.00 0.50 94.37 1.20 13.11 Good II

8 9 1.50 2.00 0.33 90.21 1.00 2.48 Poor IV

9 3 1.50 4.00 0.50 83.98 1.00 5.25 Fair III

10 6 1.00 5.00 0.33 93.24 1.00 1.03 Poor IV

11 3 2.00 1.50 0.66 94.72 1.00 27.79 Good II

12 3 1.50 2.00 1.00 77.25 1.50 12.84 Good II

13 5 1.50 2.00 0.50 81.39 1.00 6.08 Fair III

14 3 1.50 2.00 0.33 88.63 1.00 7.34 Fair III

15 7 1.50 2.00 0.50 79.07 1.00 4.23 Fair III

16 9 1.50 2.00 0.33 87.81 1.00 2.42 Poor IV

17 3 1.00 3.50 0.66 83.92 1.00 5.28 Fair III

Note: Jn—joint set number; Jr—joint roughness number; Ja—joint alteration number; Jw—joint water reduction factor; RQD—rock quality
designation; SRF—stress reduction factor.
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Table 9. Results obtained by MRMR method for underground stations.

Station RMR Cw Co Cs Cb MRMR Qualitative
Rating

Susceptibility
Level

1 68.80 0.94 0.90 1.20 1 69.87 Good II

2 63.10 0.94 0.90 1.20 1 65.28 Good II

3 66.50 1.00 0.90 1.20 1 71.92 Good II

4 61.00 1.00 0.80 1.20 1 58.66 Fair III

5 47.40 1.00 0.80 1.20 1 45.52 Fair III

6 65.40 0.94 0.90 1.20 1 66.42 Good II

7 65.20 1.00 0.90 1.20 1 70.44 Good II

8 50.90 0.94 0.90 1.20 1 51.68 Fair III

9 58.50 0.94 0.80 1.20 1 52.88 Fair III

10 60.80 0.94 0.80 1.20 1 54.90 Fair III

11 68.10 1.00 0.90 1.20 1 73.57 Good II

12 52.30 0.94 0.90 1.20 1 53.12 Fair III

13 51.90 0.94 0.9 1.2 1 52.70 Fair III

14 51.90 0.94 0.9 1.2 1 52.76 Fair III

15 47.70 0.94 0.9 1.2 1 48.53 Fair III

16 46.50 0.94 0.9 1.2 1 47.28 Fair III

17 50.00 0.76 0.9 1.2 1 41.10 Fair III

Note: RMR, rock mass rating; Cw, weathering; Co, joint orientation; Cs, mining-induced stresses; Cb, blasting effects.

Figure 8. (a) Zoning of the underground exploitation area according to the geomechanical evaluation
applying the Q-Barton method in the tunnel stations and (b) classification of the results obtained
from the underground stations’ evaluation using the Q-Barton method.
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On the other hand, 64.71% of the rock mass evaluated with the MRMR method presents
fair rock quality (detachment susceptibility III in Table 9), while 35.29% corresponds to good
rock quality (detachment susceptibility II in Table 9) (Figure 9b). Figure 9a shows a map
zoning the studied area based on the rock mass quality obtained by the MRMR method.

Figure 9. (a) Zoning of the underground exploitation area according to the geomechanical evaluation
applying the MRMR method and (b) classification of the results obtained from evaluating the
underground stations’ using the MRMR method.

5. Interpretation of Results and Discussion

The geological characterization carried out, both in the outcrops and surface stations
and in the underground stations in the study area, revealed two geological scenarios:
first of all, an area denominated superficial (up to about 50 m deep, Figure 6b) where the
materials present an evident weathering as a consequence, mainly, of an intense chemical
alteration. This alteration does not prevent the original rock’s recognition, although its
physical properties are profoundly modified (Table 5), compromising its strength and
stability. Just below this zone appears the so-called underground zone (depths greater than
50 m). In this deeper zone, the rocks do not present significant alterations, except in some
specific areas, due to the hydrothermal activity that produced the deposit’s mineralization.
It should be noted that the depth of 50 m mentioned corresponds to the maximum depth at
which, in this study, the presence of generally altered rock was detected. In some areas, it
was found that the altered rock layer has small thicknesses.

In the surface stability analysis, the applied land stability evaluation methodology [65–69]
made it possible to define a susceptibility map of instability in the study area (Figure 7).
This contribution is considered very relevant because it allows characterization of the low
land stability and, in particular, its low potential to support underground mining operations.
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In the case of underground materials, the two methods used (Q-Barton Index and
MRMR) could be used to obtain comparable results to zone the areas susceptible to in-
stabilities (Figures 8 and 9). Thus, the Q-Barton method presents a land categorization
with lower values (23.53% of the stations rock of poor quality; 35.29% fair quality; 41.18%
good-very good quality) than the MRMR method (64.71% of the stations rock of regular
quality; 35.29% good). Underground stations classified with the worst qualities in both
methods are characterized by presenting conjugate fracture systems and water presence. As
shown in Figures 8 and 9, the most detailed results are provided by the Q-Barton method.

Given the stability conditions defined in the zoning maps, it is advisable to propose
actions that guarantee the safety of the area, preventing instabilities from affecting the
population and infrastructures. These proposals are summarized below:

• In surface areas with high susceptibility to instability (susceptibility levels IV and V),
it is recommended to improve the surface drainage system, prepare a reforestation
plan, and restrict urban development. Illegal mining activities must be stopped to
avoid endangering the population.

• In underground areas susceptible to instabilities (susceptibility level above III), it is
recommended to improve the water drainage systems in all galleries, use better meth-
ods and materials to support gallery ceilings, and use the filling of sterile chambers in
addition to the support pillars.

• In the closest areas to the urban area, it is recommended to extend the study with
additional surface and underground geomechanical stations to obtain a metric scale
susceptibility model.

6. Conclusions

The application of the evaluation processes used allowed the zoning of areas with a
potential risk of land instability in the mining environment of Zaruma. The information
collected on the surface (outcrops and sampling stations) and in underground galleries
(sampling stations) made it possible to verify that there is an area up to 50 m thick in
which the altered rock predominates. It does not present guarantees of stability to carry
out extractive works.

The susceptibility maps of instability phenomena (subsidence and landslides) gener-
ated in this work are adequate spatial planning tools. Thus, they can be used as a basis for
the proposal of measures to limit the subsidence within the city’s urban area and safeguard
its population’s lives.

Supplementary Materials: The following are available online at https://www.mdpi.com/2071-105
0/13/6/3272/s1, Table S1: Parameters used for the susceptibility assessment, Table S2: Descriptions
and ratings for the Jr, Jn, Ja, and Jw parameters, Table S3: Descriptions and ratings for the C.D., Cw,
Co, Cs, and Cb parameters.
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